6 research outputs found

    One vertex spin-foams with the Dipole Cosmology boundary

    Full text link
    We find all the spin-foams contributing in the first order of the vertex expansion to the transition amplitude of the Bianchi-Rovelli-Vidotto Dipole Cosmology model. Our algorithm is general and provides spin-foams of arbitrarily given, fixed: boundary and, respectively, a number of internal vertices. We use the recently introduced Operator Spin-Network Diagrams framework.Comment: 23 pages, 30 figure

    Feynman diagrammatic approach to spin foams

    Full text link
    "The Spin Foams for People Without the 3d/4d Imagination" could be an alternative title of our work. We derive spin foams from operator spin network diagrams} we introduce. Our diagrams are the spin network analogy of the Feynman diagrams. Their framework is compatible with the framework of Loop Quantum Gravity. For every operator spin network diagram we construct a corresponding operator spin foam. Admitting all the spin networks of LQG and all possible diagrams leads to a clearly defined large class of operator spin foams. In this way our framework provides a proposal for a class of 2-cell complexes that should be used in the spin foam theories of LQG. Within this class, our diagrams are just equivalent to the spin foams. The advantage, however, in the diagram framework is, that it is self contained, all the amplitudes can be calculated directly from the diagrams without explicit visualization of the corresponding spin foams. The spin network diagram operators and amplitudes are consistently defined on their own. Each diagram encodes all the combinatorial information. We illustrate applications of our diagrams: we introduce a diagram definition of Rovelli's surface amplitudes as well as of the canonical transition amplitudes. Importantly, our operator spin network diagrams are defined in a sufficiently general way to accommodate all the versions of the EPRL or the FK model, as well as other possible models. The diagrams are also compatible with the structure of the LQG Hamiltonian operators, what is an additional advantage. Finally, a scheme for a complete definition of a spin foam theory by declaring a set of interaction vertices emerges from the examples presented at the end of the paper.Comment: 36 pages, 23 figure

    Zastosowania sieci spinowych i pian spinowych w kwantowej grawitacji

    No full text
    The Spin Foam models are a path integral picture of Loop Quantum Gravity approach to quantisation of gravitational field. This PhD thesis presents a study of four issues of Spin Foam models. The first problem addressed is the question of the class of 2-complexes, that ensure that Spin Foam models are compatible with the kinematic sector of Loop Quantum Gravity. A framework of diagrammatic representation of spin foams was developed while researching this issue. This diagramatic representation is called Operator Spin-network Diagrams (OSDs). The OSDs allow to express a spin foam as a collection of graphs, connected by certain relations. Each graph captures the local structure of one of spin foam vertices, i.e. nodes of a graph correspond to edges and links of a graph correspond to faces incident to a spin foam vertex. The relations between graphs in OSDs represent the way, in which edges and faces connect vertices. It is proven, that for each OSD there is an unambiguous way to construct a 2-complex with cells labelled by a spin foam coloring, so that one can calculate the spin foam transition amplitude. A clear procedure to glue OSDs along their boundaries was developed. Such gluing is an equivalent of composing quantum processes. All possible OSDs are characterised in terms of gluing of basic diagrams representing zero or one interaction vertex each. The proposition of the answer to the first question is that the appropriate class of 2-complexes for Spin Foam models is given by all the 2-complexes that can be obtained out of OSDs. The OSDs was applied to find a solution of so called boundary problem: to find all spin foams which have boundary given by certain initial and final states of Loop Quantum Gravity. An algorithm finding a series of all OSDs with a given fixed boundary is presented. The series is ordered by the number of internal edges of the corresponding spin foam. The algorithm is tested by applying it to Dipole Cosmology model (introduced in 2010 by E. Bianchi, C. Rovelli and F. Vidotto). All the diagrams contributing to Dipole Cosmology amplitude, which have the minimal number of internal edges, are found. The contribution to transition amplitude coming from these diagrams is studied. It appears that in this order of expansion all the diagrams except from one gives amplitudes that are exponentially suppressed in the semiclassical limit, thus their presence does not spoil the result of authors of Dipole Cosmology model. The third issue addressed in this thesis were the divergent amplitudes in Spin Foam models caused by bubbles in spin foam 2-complexes (i.e. subcomplexes forming closed surfaces). Within the framework of 2-complexes it is relatively hard to find the bubble part of a spin foam, whereas the framework of OSDs provides a simple procedure that unambiguously identifies the bubble subdiagram. A notion of the rank of a bubble is introduced. The rank counts the number of elementary bubbles that the considered bubble consist of. A method to calculate the rank for each given OSD is presented. Several simple cases of diagrams containing bubbles, that illustrate the algorithms, are presented and studied. The fourth question posed and answered within this thesis is related to detailed study of one particular case of a spin foam bubble, called melonic bubble. The melonic bubble is a spin foam analogue of self-energy renormalization in Quantum Field Theory. Recent research led to a conclusion, that in the first order the self-energy correction is proportional to some operator T, however the operator T was not known. In the thesis this operator is studied in semiclassical limit. After some elaborate calculations the exact form of the leading order of T is found: for fixed eigenvalues of the area operators it is proportional to the identity operator, with the proportionality constant dependent on the eigenvalues.Piany spinowe (Spin Foams) s膮 formalizmem ca艂ek po trajektoriach dla poszukiwa艅 kwantyzacji pola grawitacyjnego w ramach P臋tlowej Kwantowej Grawitacji (Loop Quantum Gravity, LQG). W tej rozprawie doktorskiej zosta艂y przedstawione i rozwi膮zane cztery problemy modeli pian spinowych. Pierwszym przedstawionym zagadnieniem jest pytanie, na jakiej klasie 2-kompleks贸w nale偶y zdefiniowa膰 modele pian spinowych, aby determinowana przez nie dynamika by艂a okre艣lona dla wszystkich stan贸w kinematycznych LQG. W ramach badania tego zagadnienia wprowadzony zosta艂 j臋zyk diagram贸w, nazwanych diagramami operatorowo spin-networkowymi (Operator Spin-network Diagrams, diagramy OSD), pozwalaj膮cy przedstawi臋 pian臋 spinow膮 jako zbi贸r graf贸w po艂膮czonych pewnymi relacjami. Ka偶dy graf opisuje struktur臋 jednego wierzcho艂ka piany spinowej: w臋z艂y grafu i po艂膮czenia w臋z艂贸w grafu reprezentuj膮 odpowiednio kraw臋dzie i 艣ciany piany spinowej, stykaj膮ce si臋 z opisywanym wierzcho艂kiem. Relacje miedzy grafami w diagramach OSD opisuj膮, w jaki spos贸b kraw臋dzie i 艣ciany 艂膮cz膮 wierzcho艂ki piany spinowej. Zosta艂o udowodnione, 偶e dla ka偶dego diagramu OSD mo偶na w jednoznaczny spos贸b skonstruowa膰 2-kompleks, kt贸rego kom贸rki pokolorowane s膮 tak, 偶e mo偶na dla niego obliczy膰 pianow膮 amplitud臋 przej艣cia. Ponadto wprowadzona zosta艂a procedura sklejania diagram贸w OSD wzd艂u偶 brzeg贸w, odpowiadaj膮ca sk艂adaniu proces贸w kwantowych. Wszystkie mo偶liwe diagramy OSD mo偶na przedstawi膰 jako odpowiednie sklejenie diagram贸w elementarnych, tj. reprezentuj膮cych zero lub jeden wierzcho艂ek oddzia艂ywania. Wszystkie 2-kompleksy, kt贸re mo偶na uzyska膰 z diagram贸w OSD, tworz膮 klas臋, kt贸ra zosta艂a zaproponowana jako adekwatna, aby zdefiniowa膰 na niej modele pian spinowych. Diagramy OSD zosta艂y nast臋pnie u偶yte do rozwi膮zania tzw. problemu brzegowego, tzn. aby znale藕膰 wszystkie piany spinowe o z g贸ry zadanym brzegu, sk艂adaj膮cym si臋 z pary stan贸w - wej艣ciowego i wyj艣ciowego - b臋dacych kinematycznymi stanami LQG. Sformu艂owany zosta艂 algorytm pozwalaj膮cy znale藕膰 szereg zawieraj膮cy wszystkie diagramy OSD o okre艣lonym brzegu. Diagramy te uszeregowane s膮 wzgl臋dem liczby wewn臋trznych kraw臋dzi odpowiadaj膮cych im pian spinowych. Algorytm ten zosta艂 przetestowany na modelu Dipole Cosmology (wprowadzonym w 2010 przez E. Bianchi, C. Rovelli oraz F. Vidotto). Znalezione zosta艂y wszystkie diagramy daj膮ce wk艂ad do amplitudy przej艣cia w modelu Dipole Cosmology w najni偶szym rz臋dzie. Zbadany zosta艂 r贸wnie偶 wk艂ad znalezionych diagram贸w do amplitudy. Okaza艂o si臋, 偶e amplitudy wszystkich znalezionych zanikaj膮 eksponencjalnie w granicy semiklasycznej, tak wi臋c uwzgl臋dnienie ich nie psuje wynik贸w autor贸w modelu Dipole Cosmology. Trzecim zagadnieniem badanym w ramach niniejszej rozprawy s膮 niesko艅czono艣ci wyst臋puj膮ce w pianach spinowych wywo艂ane obecno艣ci膮 b膮bli w 2-kompleksach (tzn. podkompleks贸w tworz膮cych zamkni臋te powierzchnie). W ramach dotychczasowego j臋zyka opartego na 2-kompleksach znajdywanie b膮bli by艂o uci膮偶liwe. Dzi臋ki diagramom OSD wprowadzony zosta艂 prosty algorytm pozwalaj膮cy jednoznacznie zidentyfikowa膰 cz臋艣膰 diagramu reprezentuj膮c膮 b膮bel. Wprowadzone zosta艂o pojecie rz臋du b膮bla, mierz膮ce liczb臋 elementarnych b膮bli sk艂adaj膮cych si臋 na badany b膮bel. Podana zosta艂a metoda obliczenia rz臋du b膮bla dla dowolnego diagramu OSD. Powy偶sze narz臋dzia zosta艂y zilustrowane przyk艂adami prezentuj膮cymi kilka podstawowych typ贸w b膮bli. Czwarte pytanie, na kt贸re odpowied藕 zawarta jest w tej rozprawie, zwi膮zane jest ze szczeg贸艂ow膮 analiz膮 konkretnego przyk艂adu b膮bla, zwanego b膮blem typu melon. B膮bel typu melon jest pian膮 spinow膮 reprezentuj膮c膮 proces analogiczny do energii samooddzia艂ywania w Kwantowej Teorii Pola. Dotychczasowe badania pokaza艂y, 偶e jego amplituda jest proporcjonalna do pewnego operatora T, jednak sam operator T by艂 nieznany. W ramach niniejszej rozprawy doktorskiej operator T zosta艂 zbadany w granicy semiklasycznej. Uzyskano 艣cis艂膮 posta膰 wiod膮cego rz臋du operatora T: dla ustalonych warto艣ci w艂asnych operator贸w pola powierzchni jest on proporcjonalny do operatora jednostkowego ze wsp贸艂czynnikiem proporcjonalno艣ci zale偶nym od tych warto艣ci w艂asnych
    corecore